10 research outputs found

    Spatial Heterogeneity of Soil and Vegetation Characteristics and Soil-Vegetation Relationships along an Ecotone in Southern Mu Us Sandy Land, China

    Get PDF
    Spatial pattern analysis is an essential component of spatial heterogeneity studies on soil properties and vegetation characteristics. It was conducted in several studies for both soil and vegetation characteristics (Strand et al., 2007; Dick and Gilliam, 2007; Zuo et al., 2010). This study aims to examine the changes in the spatial heterogeneity of soil properties at different soil layers, the spatial heterogeneity of soil and vegetation characteristics along an ecotone, and soil-vegetation relationships along the ecotone in a critical area of desertification

    Comparison of microbial community structures in soils with woody organic amendments and soils with traditional local organic amendments in Ningxia of Northern China

    Get PDF
    Background Addition of organic amendments has been commonly adopted as a means to restore degraded soils globally. More recently, the use of woody organic amendments has been recognized as a viable method of capturing and retaining water and restoring degraded and desertified soil, especially in semi-arid regions. However, the impacts of woody amendments on soil microbial community structure, versus other traditional organic supplements is less understood. Methods Three locally available natural organic materials of different qualities, i.e., cow manure (CM), corn straw (CS), and chipped poplar branches (PB) were selected as treatments in Ningxia, Northern China and compared with control soils. Four microcosms served as replicates for each treatment. All treatments contained desertified soil; treatments with amendments were mixed with 3% (w/w) of one of the above organic materials. After 7 and 15 months from the start of the experiment, soil samples were analyzed for chemical and physical properties, along with biological properties, which included microbial α-diversity, community structure, and relative abundance of microbial phyla. Results Both bacterial and fungal α-diversity indices were weakly affected by amendments throughout the experimental period. All amendments yielded different microbial community compositions than the Control soils. The microbial community composition in the CS and PB treatments also were different from the CM treatment. After 15 months of the experiment, CS and PB exhibited similar microbial community composition, which was consistent with their similar soil physical and chemical properties. Moreover, CS and PB also appeared to exert similar effects on the abundance of some microbial taxa, and both of these treatments yield different abundances of microbial taxa than the CM treatment. Conclusion New local organic amendment with PB tended to affect the microbial community in a similar way to the traditional local organic amendment with CS, but different from the most traditional local organic amendment with CM in Ningxia, Northern China. Moreover, the high C/N-sensitive, and lignin and cellulose decompose-related microbial phyla increased in CS and PB have benefits in decomposing those incorporated organic materials and improving soil properties. Therefore, we recommend that PB should also be considered as a viable soil organic amendment for future not in Ningxia, but also in other places

    Ecosystem functions including soil organic carbon, total nitrogen and available potassium are crucial for vegetation recovery

    Get PDF
    The effects of biodiversity on ecosystem functions have been extensively studied, but little is known about the effects of ecosystem functions on biodiversity. This knowledge is important for understanding biodiversity-ecosystem functioning relationships. Desertification reversal is a significant global challenge, but the factors that play key roles in this process remain unclear. Here, using data sampled from areas undergoing desertification reversal, we identify the dominant soil factors that play a role in vegetation recovery with ordinary least squares and structural equation modelling. We found that ecosystem functions related to the cycling of soil carbon (organic C, SOC), nitrogen (total N, TN), and potassium (available K, AK) had the most substantial effects on vegetation recovery. The effects of these ecosystem functions were simultaneously influenced by the soil clay, silt and coarse sand fractions and the soil water content. Our findings suggest that K plays a critical role in ecosystem functioning and is a limiting factor in desertification reversal. Our results provide a scientific basis for desertification reversal. Specifically, we found that plant biodiversity may be regulated by N, phosphorus (P) and K cycling. Collectively, biodiversity may respond to ecosystem functions, the conservation and enhancement of which can promote the recovery of vegetation

    Efficient Production of Dried Whole Peanut Fruits Based on Infrared Assisted Spouted Bed Drying

    No full text
    The present study is designed to evaluate the effect of infrared assisted spouted bed drying (IR-SBD) on the product quality and energy consumption of whole peanut fruits (including peanut kernels and shells). The dehydration of whole peanuts by means of hot-air drying (HD) and infrared drying (ID) were used as the control groups, and the drying characteristics, energy consumption, microstructure, porosity, hardness and fatty acid content were compared. The results showed that, compared to HD and ID, IR-SBD could reduce the drying time by 40% and 33%, respectively, and reduced energy consumption by 66% and 32%, respectively. During the drying process, the structures of both the peanut shells and peanut kernels underwent significant deformation; specifically, the porosity gradually increased gradually. The maximum porosity value was obtained by the samples dried by means of IR-SBD. Under the three drying conditions, the hardness of the peanut shells first decreased and then increased, while the hardness of the peanut kernels showed a trend of first increasing, then decreasing and finally increasing. Compared to the fresh whole peanuts, the IR-SBD dried samples exhibited a 4.07% decrease in fatty acid. This study shows that IR-SBD is a suitable application for the dehydration process of whole peanuts for the purposes of achieving high-efficiency and -quality production in the industrial sector

    The complete chloroplast genome sequence of Pennisetum flaccidum (Poaceae)

    No full text
    Pennisetum flaccidum Grisebach is a typical high-quality forage and adrought-tolerant grass. In this study, we firstly reported the complete chloroplast (cp) genome of P. flaccidum, which was 138,336 bp in length, including a pair of inverted repeats (IR: 22,293 bp), a large single copy (LSC: 81,329 bp), and a small single copy (SSC: 12,421 bp) region. A total of 131 genes were annotated, containing seven rRNA genes, 38 tRNA genes, and 86 protein-coding genes. The GC content of the cp genome was 38.63%. The maximum-likelihood (ML) phylogenetic tree indicated that P. flaccidum was closely related to P. cetaceum in Poaceae

    Chidamide in relapsed or refractory peripheral T cell lymphoma: a multicenter real-world study in China

    No full text
    Abstract The efficacy and safety of chidamide, a new subtype-selective histone deacetylase (HDAC) inhibitor, have been demonstrated in a pivotal phase II clinical trial, and chidamide has been approved by the China Food and Drug Administration (CFDA) as a treatment for relapsed or refractory peripheral T cell lymphoma (PTCL). This study sought to further evaluate the real-world utilization of chidamide in 383 relapsed or refractory PTCL patients from April 2015 to February 2016 in mainland China. For patients receiving chidamide monotherapy (n = 256), the overall response rate (ORR) and disease control rate (DCR) were 39.06 and 64.45%, respectively. The ORR and DCR were 51.18 and 74.02%, respectively, for patients receiving chidamide combined with chemotherapy (n = 127). For patients receiving chidamide monotherapy and chidamide combined with chemotherapy, the median progression-free survival (PFS) was 129 (95% CI 82 to 194) days for the monotherapy group and 152 (95% CI 93 to 201) days for the combined therapy group (P = 0.3266). Most adverse events (AEs) were of grade 1 to 2. AEs of grade 3 or higher that occurred in ≥5% of patients receiving chidamide monotherapy included thrombocytopenia (10.2%) and neutropenia (6.2%). For patients receiving chidamide combined with chemotherapy, grade 3 to 4 AEs that occurred in ≥5% of patients included thrombocytopenia (18.1%), neutropenia (12.6%), anemia (7.1%), and fatigue (5.5%). This large real-world study demonstrates that chidamide has a favorable efficacy and an acceptable safety profile for refractory and relapsed PTCL patients. Chidamide combined with chemotherapy may be a new treatment choice for refractory and relapsed PTCL patients but requires further investigation
    corecore